题一:
有十二个小球,有一个质量和其它十一个不一样,不知道是重还是轻。用一个天秤称三次,把这个质量不同的球给区别出来?
答案:
分三组:1234 5678 9ABC
第一次 如果 1234 = 5678, 则9ABC用两次,配合1234,5678中的标准球,肯定能出来。 第一次 如果 1234 > 5678 则9ABC都是标准的 第二次 5239和1ABC, 1 如果 5234 = 1ABC 说明678有问题,因为之前1234 > 5678,所以结果球比标准球轻, 第三次 称 6和7,如果想等则结果是8,如果6〉7则为7,如果6<7则为6,END 2 如果 5234 〉1ABC 说明234有问题,而且结果球比标准球重 第三次 称 2和3,如果想等则结果是4,如果2〉3则为2,如果2<3则为3,END 3 如果 5234〈1ABC 说明1跟5有问题,因为ABC是标准球,只有1跟5互换导致天平反向 第三次 称1跟A,相对则为5(比标准球轻),不等则为1(比标准球重)END
题二:
五个海盗抢到了100颗宝石,每一颗都一样大小和价值连城。他们决定这么分: 抽签决定自己的号码(1、2、3、4、5) 首先,由1号提出分配方案,然后大家表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔进大海喂鲨鱼 如果1号死后,再由2号提出分配方案,然后剩下的4人进行表决,当且仅当超过半数的人同意时,按照他的方案进行分配,否则将被扔入大海喂鲨鱼 依此类推 条件:每个海盗都是很聪明的人,都能很理智地做出判断,从而做出选择。 问题:第一个海盗提出怎样的分配方案才能使自己的收益最大化?
答案:
首先从5号海盗开始,因为他是最安全的,没有被扔下大海的风险,因此他的策略也最为简单,即最好前面的人全都死光光,那么他就可以独得这100枚金币了。 接下来看4号,他的生存机会完全取决于前面还有人存活着,因为如果1号到3号的海盗全都喂了鲨鱼,那么在只剩4号与5号的情况下,不管4号提出怎样的分配方案,5号一定都会投反对票来让4号去喂鲨鱼,以独吞全部的金币。哪怕4号为了保命而讨好5号,提出(0,100)这样的方案让5号独占金币,但是5号还有可能觉得留着4号有危险,而投票反对以让其喂鲨鱼。因此理性的4号是不应该冒这样的风险,把存活的希望寄托在5号的随机选择上的,他惟有支持3号才能绝对保证自身的性命。 再来看3号,他经过上述的逻辑推理之后,就会提出(100,0,0)这样的分配方案,因为他知道4号哪怕一无所获,也还是会无条件的支持他而投赞成票的,那么再加上自己的1票就可以使他稳获这100金币了。 但是,2号也经过推理得知了3号的分配方案,那么他就会提出(98,0,1,1)的方案。因为这个方案相对于3号的分配方案,4号和5号至少可以获得1枚金币,理性的4号和5号自然会觉得此方案对他们来说更有利而支持2号,不希望2号出局而由3号来进行分配。这样,2号就可以屁颠屁颠的拿走98枚金币了。 不幸的是,1号海盗更不是省油的灯,经过一番推理之后也洞悉了2号的分配方案。他将采取的策略是放弃2号,而给3号1枚金币,同时给4号或5号2枚金币,即提出(97,0,1,2,0)或(97,0,1,0,2)的分配方案。由于1号的分配方案对于3号与4号或5号来说,相比2号的方案可以获得更多的利益,那么他们将会投票支持1号,再加上1号自身的1票,97枚金币就可轻松落入1号的腰包了。
1号强盗 2号强盗 3号强盗 4号强盗 5号强盗 1号强盗方案A 97 0 1 2 0 1号强盗方案B 97 0 1 0 2 2号强盗方案 98 0 1 1 3号强盗方案 100 0 0 4号强盗方案 0 100 5号强盗方案 100
标准答案: 1号海盗分给3号1枚金币,4号或5号2枚金币,自己则独得97枚金币,即分配方案为(97,0,1,2,0)或(97,0,1,0,2)。 |
| |